

0040-4020(93)EO152-6

HEXACHLOROCYCLOPENTADIENE IN DIELS-ALDER ASYMMETRIC REACTION

ldris M. Akhmedov¹, Bekir Peynircioğlu, Eldar G. Mamedov¹, Cihangir Tanyeli and Ayhan S. Demir^{*}

Middle East Technical University, Department of Chemistry 06531 Ankara Turkey.

Abstract: Asymmetric thermal Diels-Alder reactions with chiral dienophiles *l*-menthyl acrylate and *l*-menthyl allyl ether, using hexachlorocyclopentadiene (HCC) gave cycloadducts of up to 15%ee. Milder reaction condition as pure enantiomers.

Diels-Alder reactions are one of the most important means of C-C bond formation. Asymmetric Diels-Alder reactions have been extensively reviewed'. Asymmetric Diels-Alder reaction with hexachlorocyclopentadiene (HCC) has not been previously investigated. Miyazaki and coworkers³ reported the separation of chlordene and epoxychlordene as cycloadducts of HCC into their enantiomers and found considerable difference in biological activity between them. Another study⁴ on the Diels-Alder reactions of HCC described the resolution of the adduct, endo-hexachloronorbornene-2-carboxylic acid (1), into its enantiomers via diastereomeric ethers, without, however, any determination of absolute configurations.

Adduct 1 resulting from the cycloaddition of HCC and acrylic acid has now been separated into its enantiomers via diastereomeric salts with *l*-ephedrine as described by Williamson⁵, and absolute configurations have been determined. Asymmetric Diels-Alder reactions with HCC and I-menthyl acrylate as well as I-menthyl ally1 ether have been carried out and the absolute configurations of the adducts have been determined by relating them to the enantiomers of adduct **1.**

RESULTS AND DISCUSSION

The formation and resolution of adduct **1** is shown in Scheme 1. The salt 2 was obtained from the diastereomeric mixture of *I*-ephedrine salts of (t) -1 through repeated crystallizations until a constant melting point and rotation were obtained. Acidification of 2 gave optically pure acid **1.** The R configuration was assigned to this acid at position C-2 on the basis of the Cotton effect (Figure 1) exhibited by the carbonyl chromophore of (-)-1, the sign of which was opposite to that of endo-2R-(+)-norbornene-2-carboxylic acid6. 2R-(-)-acid **1** was methylated to 2R-(-)-ester 3, that was reduced to 2R-(-)-alcohol 4. Addition of the shift reagent, Eu(hfc)₃ did not result in unfortunately any displacement of signals in the $1 + NMR$ spectrum of 2R-(-)-3.

Fig 1. CD spectra of endo-2-R-(+)-norbornenecarboxylic acid and endo-2R-(-)-1.4.5.6.7.7hexachloronorbornenecarboxylic acid (-)-1.

Scheme 1

The asymmetric Diels-Alder reaction using HCC and I-menthyl acrylate as well as I-menthyl ally1 ether is shown in Scheme 2. This reaction was carried out at temperatures between 100-160 °C. The total yield of adducts 5 and 6 increased with the temperature and reached 60 and 60%, respectively, at 140 °C. Only minor increases were noted between 140 and 160 °C (Table 1). Endo isomers were exclusively formed in all cases. Chiral menthyl residues were removed by hydrolysis from 5 and 6 to yield the acid 1 and the alcohol 4,respectively. The alcohol 4 was also obtained by reduction of 5 with lAH. Compounds 1 and 4 (Scheme 2) were analyzed for the extent of asymmetric induction in the two Diels-Alder reactions. The ¹H- NMR spectrum of 1 was analogous to that of 2R-(-)-1 in Scheme 1 and the $1 + 1$ -NMR spectrum of alcohol 4 was analogous to that of $2R-(-1)-4$ obtained from $2R-(-1)-3$. 1 and 4 in Scheme 2 possessed optical activity and their optical purities were determined by comparing their specific rotations with the optically pure compounds obtained in Scheme 1 and from 3. An optical yield of 14 - 15 % was obtained as a result of both asymmetric Diels-Alder reactions. This value is higher than that reported⁸ for the analogous reaction carried out with cyclopentadiene. Our optical yields do not depend on temperature (Table 1).

The reaction of HCC with *I*-menthyl acrylate was also studied at milder conditions (40-80 °C). using Lewis acid catalysis (Scheme 3). HCC is known not to undergo cycloaddition reactions below 100°C without catalysis⁷. HCC was therefore reacted with *I*-menthyl acrylate in the presence of the Lewis acids Et_2OBF_3 , AlCl₃, SnCl₄, and BBr₃ in benzene and dichloromethane. The results of these reactions are presented in Table 2.

Dienophile	Temp. С٠	Reaction duration.h	Yield %	Optical yield of predo- minant enantiomer, ee%		$\left[\alpha\right]^{20}$ _D (MeOH)	
			5	1	4		4
/-menthyl							
acrylate	100	10	15	14.2		-18.5	
×	120	5	54	14.2		-18.8	
\blacksquare	140	a.	60	14.4		-19.0	
۰	160	٠	63	14.5		-19.1	
/-menthyl allyl							
ether	100	8	53		15,0		-12.8
п	120	٠	67		15.0		-12.7
	140	۰	81		15.2		-12.9
	160	۰ \sim	83		15.3		-13.0

Table 1: Temperature dependence of the reaction of HCC (-) *I-menthylallyl* ether and *I-menthyl acrylate*

Scheme 2

Removal of the chiral residues from the initial adduct 5 yielded 1 and 4 with opposite configurations with respect to those of 2R-(-)-1 and 2R-(-)-4. This implies that the reaction proceeds through completely different transition states^{6a} compared to the uncatalyzed reaction. The use of these catalysts allows these reactions to proceed through considerably milder conditions with a 1.9 to 2.8 fold increase in the optical yield compared to the uncatalyzed asymmetric Diels-Alder reaction.

Table 2: Conditions which influence asymmetric reaction of HCC with I-menthylacrylate in the presence of Lewis acid catalysts

EXPERIMENTAL

NMR spectra were recorded on Brucker AC 80 FT (80 MHz) and WH-400 (400 MHz) instruments and IR spectra on a PU-200 spectrometer. Optical rotations were measured on a Perkin-Elmer 141 polatimeter. CD spectra were recorded on a Jobin-Non-Dichrographe, Model Ill and ORD spectra on a Spectropol-I instrument. Solvents were dried and purified by standard techniques prior to use. I-Menthyl allyl ether and I-menthyl acrylate were prepared by methods given in the literature 9,10 . Racemic endo-hexachloronorbornene-2-carboxylic acid (1) was prepared by cycloaddition of acrylic acid and hexachlorocyclopentadiene 5 . Uncrystallized material was used for measurment of the optical rotations.

Endo-PR-(-)-l,4,5,6,7,7-Hexachloronorbomene-2-carboxylic acid (1): Racemic *endo-1,4,5,6,7,7-hexachloronorbornene-2-carboxylic* acid (1) (17.2 *g, 0.05* mol) in anhydrous ether (50 ml) was added dropwise to I-ephedrine (8.26 g, 0.05 mol) in anhydrous ether, at 0°C, to yield the diastereomeric mixture of ephedrine salt of ± 1 (2) (22.2 g, 87%, mp 160-163 °C, $[\alpha]^{20}$ -20.76, c 1.92, MeOH).

Anal. calc'd for $C_{18}H_{19}O_3Cl_6N$: C, 42.38, H, 3.75, Cl, 41.71. Found : C, 42.20, H, 3.53, Cl, 41 .15.

The diastereomeric salt 2 was recrystallized from MeOH to a constant melting point to yield optically pure 2 (3.6 g, 13.7%, mp 198-199°C, $[\alpha]^{20}$ ₀-133.1, c 1.92 MeOH). Optically pure 2 (2.55 g, 0.005 mol) was hydrolyzed with 5% H_2SO_d , taken up in ether, washed and dried (MgSO₄). Removal of solvent yielded 2R-(-)-1 (1.63 g, 95%, mp 178-179°C, $[\alpha]^{20}$ ₀-132, c 1.54 MeOH).

(-)-1 is also obtained in 14.4% ee (Table 1) from the saponification of ester 5. A mixture of adduct 5 (4.8 g. 0.01 mol) and KOH (0.6 g) in MeOH (30 ml) was refluxed for 2h. Methanol was removed and the residue was dissolved in 20 ml of water, acidified and yielded the acid (1) (mp 182- 183oC from ether:hexane, 98%). 'H-NMR (CDCI,) 6 10.95(s, O-H), 3.68(dd, H-C-COO), 2.80(dd, exo H), 2.54(dd, endo H), 3 J=4.8 Hz trans, 3 J=8.5 Hz cis, 2 J=12.5 Hz.

 $2S-(+)$ -1 with an enantiomeric excess of 24.9- 39.1% (Table 1) (mp 182-183°C, etherhexane, $[\alpha]_0^{20}$ +51.65, c 3.7 MeOH) was obtained from the saponification (KOH) of endo-l-menthyl 1,4,5,6,7,7-hexachloronorbornene (2S-5) obtained from the reaction of I-menthyl acrylate and hexachlorocyclopentadiene using Lewis acid catalysis (see below).

Methylendo-2R-(-)-1,4,5,6,7,7-hexachloronorbornene-2-carboxylate (3): An ethereal solution of excess diazomethane (0.01 mol) was added dropwise to the solution of (-)-1 (1.72 g, 0.005 mol) in anhydrous ether (30 ml) at -10°C and the resultant solution was stirred at room temperature for 30 min. Removal of solvent yielded 3 as colorless solid (mp 58-60°C from MeOH, $[\alpha]^{20}$ _O-148, c 3.2, MeOH). ¹H-NMR(CDCl₃) δ 3.76 (s, -OCH₃), 3.46 (dd, exo H, H-C-COOMe), 2.62 (dd, exo H), 2.38 (dd, endo H), 2 J=13.0 Hz, 3 J=8.1 Hz (cis), 3 J=3.6 Hz (trans).

Anal. Calc'd for $C_9H_6O_2Cl_6$: C, 30.12, H, 1.69, Cl, 59.29.

Found: C, 29.93, H, 1.59, Cl, 59.21.

Endo-2R-(-)-2-hydroxymethyl-1,4,5,6,7,7-hexachloronorbornene (4): 3 (1.8 g, 0.005 mol) was

reduced with LiAlH₄ (0.2 g, 0.005 mol) as described in the literature⁷ to yield 4 (1.52 g, 92%, mp 167°C from MeOH, $[\alpha]^{20}$ _D-85, c 2.9, MeOH) ¹H-NMR (CDCl₃) 3.88 (dd, 1H, CH₂-O, ²J=11.2 Hz, 3 J=5.9 Hz) 3.48 (dd, 1H, CH₂-O, ²J=11.2 Hz, 3 J=7.6 Hz), 3.06 (m, CH, 3 J=4.2 Hz trans, 3 J=5.9 Hz, 3 J=7.6 Hz, 3 J=8.8 Hz cis), 2.66 (dd, ¹H, exo CH₂, 3 J=8.8 Hz cis, 2 J=12.8 Hz), 1.92 (dd, 1H, endo CH₂, 3 J=4.2 Hz trans, 2 J=12.8 Hz).

4 has also been obtained by cleavage of ether endo-l-2-menthoxymethyl-1,4,5,6,7,7hexachloronorbornene (6) and the reduction of ester 5 by LiAlH₄ (92%), 14.5% ee (Table 1) as described below.

Adduct 6 (4.69 g, 0.01 mol) was refluxed with 5% $H₂SO₄$ for 48 h. The mixture was then extracted with ether, washed and dried (MgSO₄). Removal of solvent and distillation of the residue at 172-173°C/4mm gave 4 (2.73 g, 83%, 15.3% ee),mp 163°C (from MeOH). 2S-(+)-4 (98%, $[\alpha]^{20}$ _O +31.02, c 1.7 MeOH) 36.2% ee (Table 2) was obtained from the reduction of 2S-5 obtained from the reaction of *I*-menthyl acrylate and hexachlorocyclopentadiene using Lewis acid catalysis (see below).

fndo-PR-/-Menthy/ 7,4,5,6,7,7-hexachloronorbofnene-2-c&my/ate (5): A mixture of Imenthyl acrylate (10.5 g, 0.05 mol) and hexachlorocyclopentadiene (13.6 g, 0.05 mol) with small quantity of hydroquinone in a sealed tube was heated for 8 **h at 16O*C. After removal of unreacted starting materials by distillation and repeated recrystallization of the residue from MeOH the adduct 2R-5 was isolated** as colorless crystals 14.4% ee (Table l), (15.8 g, 65%, mp 115-I **16°C). IR (Ccl,) 1730,** I **150-l 180, 920-960,750 cm-'.**

Anal. calc'd for C₁₈H₂₂O₂Cl₆: C, 44.75, H, 4.59, Cl, 44.04.

Found: C, 44.70, H, 4.55, Cl, 44.02.

Compound 2S-5 has also been obtained in the following manner. SF, etherate (0.9 g) was added to a mixture of *I*-menthyl acrylate (5.3 g, 0.025 mol) and hexachlorocyclopentadiene (6.9 g, 0.025 mol) in anhydrous CH₂Cl₂ (30 ml) at 40°C and stirred for 3 h. The mixture was then treated with dilute HCI, washed, and dried $(MgSO_d)$. After removal of solvent, unreacted starting compounds were distilled under vacuum. The residue was recrystallized (MeOH) to give compound 2S-5 (6.9 g, 57%) 36.2% ee (Table 2). All scalar physical and chemical constants were in agreement with those of compound 2R-5 synthesized by uncatalyzed cycloaddition of hexachlorocyclopentadiene and *I*-menthyl acrylate, described above. The effect of the change in the temperature, solvent and catalyst on the reaction is summarized in Table 2.

fndo-2R-/-Menthoxymethy/-7,4,5,6,7,7-hexach/oronorbornene (6): **A** mixture of I-menthyl ally1 ether (9.8 g, 0.05 mol) and hexachlorocyclopentadiene (13.6 g, 0.05 mol) in a sealed tube was heated for 8 h at 160°C. Unreacted starting materials were removed by distillation. Repeated recrystallization of the residue gave 6 as colorless crystals 15.3%ee (Table 1),(19.5 g, 83%, mp 91-92 \circ C) ⁷H-NMR (CDCI,) 4.68 (m, menthyl -CH-0), 3.42 (dd, H-C-COO), 2.35-2.65 (m, 2H, CH,-C-COO),l.OO-1.55 (m, 9H, menthyl ring & menthyl C-C-H), 0.90 (s, CH₃, menthyl), 0.78 (s, CH₃, menthyl), 0.68 (s, CH₃, menthyl) **IR (Ccl,) 1610, 1350, 1220, 1150, 920, 720 cm-'** Anal. calc'd for C₁₈H₂₄OCI₆: C, 46.08, H, 5.16, CI, 45.35. Found: C, 45.23, H, 5.16, Cl, 45.35.

Acknowledgements: Grant AFP-93-01-03-06 (Middle East Technical University) and support for I. M. A. by Scientific and Technical Research Council of Turkey are gratefully acknowledged.

REFERENCES AND NOTES

- 1. Permanent address : Institute of Polymer Materials, Azerbaijan Academy of Sciences, Sumgait-373204.
- 2. (a) Kagan, H. B.; Riant, 0. Chem. Rev. 1992, 92, 1007;(b) Oppolzer, W. *Angew.Chem., Int. Ed. fng.* 1984, *73, 876;(c)* Helmchen, G.; Karge, R.; Weetman, J.; *Modem Synthetic Methods* ; Sheffold, R., Ed.; Springer Verlag: New York, 1986; Vol. 4, pp. 262.
- 3. Miyazaki, A.; Hotta, T.; Marumo, S.; Sakai, M. J. *Agric. Food Chem.* 1978, *26, 975.*
- 4. Duke, C. C.; Wells, R. I. *Australian J. Chem.* 1987, 40, 1641.
- 5. Williamson, K. L. J. *Am. Chem. Sot.* 1983, *85, 516.*
- 6. (a) Sauer, I.; Kredel, I. Tetrahedron Left. 1968, 6359;(b) Curran, D.P.; Kim, B.H.; Piyasena, H.P.; Loncharic, R.J.; Houk, K.N. *J.Org.Chem. 1987, 52, 2137; (c)* Loncharic, R.J.; Schwartz, T.R.; Houk, K.N. *J.Am.Chem.Soc.* 1987, 109, 14; (d) Djefassi, C.; *Optical* Rotatory *Dispersion. Applications to Organic Chemistry;* Fernelius, W.C.; Hammett, L.P.; Hume, D.N.; Pople, J.A.; Roberts, J.D.; Williams, H.H. Eds.; McGraw-Hill, Inc.: New York 1960; (e) Crabbe, P.; OR0 *and CD in Chemistry* and Biochemistry; Academic Press, Inc.: New York and London, 1972.
- 7. Akhmedov, I. M.; Mamedov, E. G.; Guseinov, M. M.; Mamedov, A. A. *Zh. Org. Khim.* 1978, 14, 1197.
- 8. Zeflrov, N. S.; Shestakova, T. G.; Kurpichenov, M. A. *Chemistry of Hexachlorocyclopentadiene and Related Compounds,* Moscow 1985, pp. 211.
- 9. Hailer, A.; March, F. *Compt. Rend. Acad. Sci.* 1904, *138, 1665.*
- **IO.** Former, R. F.; Hamer, I. J. Org. *Chem.* 1966, 31, 2418.

(Received in UK 20 *July* 1993; *revised* 15 November 1993; accepted 19 November 1993)